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After some disconnected comments on the MIT bag and
string models for extended hadrons, I review current under-
"standing of extended objects in classical conventional
relativistic field theories and their quantum mechanical

interpretation.

In recent years it has become increasingly popular to study
classical theories containing extended particle~like objects as a starting
point for formulating a quantum theory of relativistic particles. Sev-
eral motivations for this are

1) One gets around the standard perturbation approach with a

fundamental field for each particle.

2) Since the proton radius is of order a fraction of a Fermi,

perhaps one should start With a theory where the lowest

order radius is not zero.
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3) Regge recurrences and daughters arise naturally as excita-
tions of normal modes of extended objects.
4) The phenomenological successes of the MIT bag model1
encourage further study of other extended models.
The extended objects studied so far seem to fall into three main
classes:
1} Theories of extended objects put in by hand at the outset,
i.e., the MIT bag and the string models.
2) Conventional local interacting field theories with non-
digsipating classical solutions.
3) "0ld fashioned” bound states, i.e., the hydrogen atom, the
deuteron, and perhaps charmonium.
In this talk I:will concentrate primarily on reviewing what is known about

extended objects of the second type. Before this, however, I will make

a couple of disconnected remarks on the first type.

Although the fundamental objects are extended, nonetheless the
MIT bag and the usual string models are local theories. By this I mean
that the classicalrequations of motion determine the time derivatives of
local quantities in terms of other local quantities at the point in
question. 1In physical terms, a kick on one side of a bag will not be
felt by the other until a signal has been propagated in a local manner
either through the bag interior or along the bag surface.

A recent paper by Bar52 has shown an equivalence in two-dimensional
space-time between a string model and a local theory of quarks and non-
Abelian gauge fields. This is particularly intriguing in that it may

3
extend to higher dimensions. Indeed, Wilson's Feynman rules for



strongly coupled gauge fields on a lattice gtrongly resemble a path
4

integral formulation of a string theory. Also, 't Hooft has argued

that for large N in the gauge group SU(N), the Jdominant diagrams in a

gauge theory have a simple stringlike topology.

I now return to conventional local field theory and discuss a
phenomenon that has been given many names, i.e., extended object, lump,
soliton, non-dissipative solution, kink, extremeon, etc., The term soliton
has become the most accepted se I shall also use it, A soliton is a
sort of ball lightning, a solution to a classical field theory possessing
a localized energy concentration that holds itself together as time
evolves. It is distinguished from 2 conventional wave packet by the
requirement that it not spread. This definition is less restrictive
than that used by_the applied mathematicians,5 who also require that
the soliton remain unchanged in collisions. In particle physics, where
we expect collisions to excite new states, we have no particular reason
to impose this more restrictive condition.

Many examples of solitons are now known in relativisﬁic field
theories. The most studied are the topological solitons, exemplified

by the sine-Gordon equation in two dimensional space time. The Lagran-

gian density for this theory is

. 1 2

£=30,9)" - (1+cosp®) (1)
and the static soliton solution is

¢(x) = = arctan(sinhp?) (2)

™ira

This equation can be crudely approximated by a length bf ribbon lying



on a table.. The field variable is represented by the transverse angle
of the ribbon wiﬁh respect to the table, and the soliton solution is a
half twist of the ribbon, In this model there exist both solitons and
anti-solitons corresponding to right and left handed twists. The

't Hooft Polyakov monopole6 generalizes the concept of a topological
soliton to four-dimensional space-time. The stability of topological
solitons is related to the possible topologically distinct mappings of
spatial infinity onto the manifold of allowed vacuum values for a set
of Higg's fields.7 In four dimensions, topological solitons of finite
energy require the introduction of gauge fields.

Another extensively studied class of solitons uses a charge
carrying field to displace a second field coherently from its normal
vacuum value. This second field then acts back on the charged field

to keep the charge distribution localized.s,9 These solitons ean also
be crudely demonstrated by a ribbon, where a weight (with conserved
baryon number) can hold a small section of the ribbon in an inverted
configuration with half twists on either side. The presence of the
weight keeps the half twists from annihilating. This type of soliton
can be constructed from scalar fields alone, but is then necessarily
time dependent. This time dependence can be a trivial time dependent
phase for the charged field, Friedberg, Lee and Sirlin9 showed that
these theories have two critical values for the soliton charge, a lower
one QC below which the soliton ceases to be stable under small pertur-
bations and a larger QS above which the soliton is absolutely stable.
In between the soliton is metastable; large fluctuations will allow it
to decay.

In addition to these two main classes of solitons, a few others

are known. In the sine-Gordon theory in two dimensions a solution called



the "breather" comnsists of a bound soliton-antisoliton pair passing
back and forth through each oﬁher. This periddic solution is analy-
tically known and satisfies our definition for a soliton. Theories
with no particular symmetry can possess solitons. For example consider

a complex field in two dimensional space-time with Hamiltonian density
H=[8]%4] 012+ ([o]%-£5%c(ore) (3)

For small but non-vanishing C, this theory has a soliton solution where
at x = +%, ¢ is approximately f but as we pass from x =- €@ to x =+ &
the phase of ¢ goes from zero to 2m. Reexpressing the field in terms
of its phase and magnitude, this looks much like a topological soliton;
however, it differs in that the solution is only metastable.

Let me emphasize that outside the topological and charge carrying
golitons, almest nothing is known., There may exist many solitons
waiting to be found. These will be difficult to find without some new
intuition to guide us.

In the past couple of years a great deal of effort has gone into
finding the meaning of these solitons in quantized field theory. The
answer is that they are particles, a new class of heavy particles that
do not appear in a conventional perturbative approach.lo. For small
nonlinearity in the field'theory, the quantization proceeds as a per-
turbation theory in quantum fluctuations about the c;assical soliton,

In this way one finds states for the soliton that are labelled by

momentum and occupation numbers for the discrete normal modes of wibration

i2; npseeesn > %)

Charge carrying solitons will also be labelled by the charge in question.



To lowest nontrivial order the mass of this state is

m = E.+ Zniwi+A E, (5)
i

where EC is ‘the classical soliton energy in its rest frame, w, is the
frequency of the i'th normal mode, and QEO is the change in the zero
point energy of the fields in the presence of the soliton, relative to
the zero point energy in the vacuum. In those cases where it has been
checked, the expression in Eq. (5) is finite after renormalization has
been taken into account. This is probably the case for all renormali-
zable theories because ultraviolet divergences should not be affected
by the presence of a slowly varyiﬁg background scliton field,
This is essentially the status of the subject a year ago. Some
of the more exciting recent results and offshoots are
1) In five-dimensional space-time solitens constructed of pure
gauge fields have been discovered.11 Their relevance to four
dimensional space-time is the tunnelling phenomenon discussed
at this conference by 't Hooft.12
2) The 't Hooft-Polyakov monopole carries magnetic charge. As
is well known, when a magnetic charge g and an electric charge
e are held near each other, the electromagnetic field sur-
rounding them carries angular momentum fﬁ . By introducing
into the theory charged bosons in the fundamental represen-
tation of the gauge group SU(2), one can form bound states
with half'integer gf . In the quantized theory these objects
should be fermions; thus, one has constructed fermions from

13
bosons in four-dimensional space-time,
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3) Jackiw and Rebbi have discovered a peculiar effect when

fermions are coupled to topological solitons. Suppose in

two-dimensional space-~time we have a topological soliton with

b(x) = -¢(-x)

S(+®) > 0 (6)

Couple fermions to this soliton with the Lagrangian density

L= &(0) +1WV +guyo (N

We are thus led to the Dirac equation for a fermion in an

odd scalar potential

(id +9(x))¥(x,t) = 0 (8)

This equation always has a zero energy solution

X

: Vo(z,t) = exp ;- v/ﬂ o(x*)dx"  ¥,(0) (9)
0
where wO(O) satisfies
(0 = 17,%,(0) - (10)

This solution has zero energy but is non-degenerate. For

+ . .
every other solution wn of positive energy there exists a
solution wn- of negative energy. Expanding in normal modes,

we can write
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-
Ve = s+ Y e Teor v @) an

n=1

: . + + .
In the usual interpretation Cn and dn create fermions and

anti-fermions respectively, but the interpretation of a is

not 80 clear. Normalize WO so that
4
[a,a ]+ =1 . (12)

Jackiw and Rebbi argue that the most symmetric and simplest

way to treat a is by introducing a quantum number of value

i%. On these states a has the action

alz >=[-3> al-2>=0
all3>=0 at|-3>=|}> (13)

This guantum number is then regarded as the fermion number
in this zero frequency mode. Thus one has solitons of half
integer fermi number. Jackiw and Rebbi show that this effect
~also occurs when coupling fermions to topological solitons
in four dimensions, such as the monopole, The meaning of
these objects in the full quantum theory is not entirely
clear.
Let me conclude by listing a few of the more interesting remaining
questions.
1) Is there a simple way to calculate the quantum corrections to
soliton-soliton scattering? Since the classical solutions

for scattering possess complicated time dependence, one must



do time dependent perturbation theory. This is in principle
possible, but a simple prescription for finding the phase
shifts perturbatively has not been given.

Does there exist a local field that can create soliton states?
For the sine-Gordon theory in two dimensions such a field
follows from the recently demonstrated equivalence with the
massive Thirring m.odel.15 T suspect all quantized solitons
can be created by local fields, but I have no idea how to

show it,

Are there other non-perturbative ways to get particles out

of quantum field theory? For many years conventional per-
turbation theory was the only extensively studied approach

to quantized field theory, and this approach missed the soliton
sectors. I close by noting that inverse couplings can appear
in non-perturbative analyses, and we have the very intriguing

relation

- 2
m,. = 5 m . (14)
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